
Thermochimica Acta, 63 (1983) 331-339 
Elsevier Science Publishers B.V., Amsterdam - Printed in The Netherlands 

331 

THERMOGENESIS: SMOOTHING TECHNIQUES IN Z-TRANSFORM 
AND HARMONIC ANALYSIS 

J.R. RODRIGUEZ, C. REY, V. PBREZ VILLAR 

Departamento de Fisica Fundamental, Facultad de Ciencias Fisicas, Universidad de Santiago de 

Compostela, Santiago de Compostela (Spain) 

V. TORRA 

Departamento de TermoIogia, Fact&ad de Ciencias, Universidad de Palma de Mallorca, Palma 

de Mallorca (Spain) 

J. ORTIN and J. VIfiALS 

Departamento de Termologia, Fact&ad de Ciencias Fisicas, Universidad de Barcelona, Barcelona 

28 (Spain) 

(Received 8 October 1982) 

ABSTRACT 

This work analyses how the standard smoothing techniques affect the thermogenesis given 
by harmonic analysis or Z-transform methods. The analysis has allowed an optimization of 
their efficiency. The results concerning signal/noise ratios of 40, 60, 80 and 100 dB are 
tabulated and generalized to a reduced frequency representation. 

INTRODUCTION 

In recent years, considerable effort has been devoted to devising fully 
working algorithms to yield the thermogenesis, namely harmonic analysis 
(based on the Fast Fourier Transform) [ 11, numeric [2] or analogic [3] inverse 
filters, dynamic optimization (conjugate gradient) [4], deconvolution by 
means of Z-transform [5] and, finally, methods based on optimal pursuit [6] 
or on a thermogram expansion in terms of an orthogonal set of rectangular 
pulse thermograms [7]. All of them have already been tested on different 
calorimeters and a great variety of heat dissipations, including thermogenesis 
corresponding to physical phenomena, have yielded really relevant results 

PI- 
Nevertheless, the existence of experimental noise on the thermograms 

clearly handicaps the obtention of the thermogenesis. Furthermore, there 
may appear extra oscillations on the thermogenesis depending on the decon- 
volutive technique used to ,perform the calculations. This is the case, for 
instance, of harmonic analysis where the introduction of a window suppress- 
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ing high frequencies itself takes an oscillation [9, lo]. This window is essential 
in order to eliminate that part of the spectrum affected by the experimental 
noise. In a similar way it is also advisable to consider that window when 
performing inverse filtration [ 1 I]. 

On the other hand, a systematic analysis of the dynamic response of 
several calorimeters has led to the introduction of a relative representation 
both in time ( t/rl, where 7, is the first time constant of the calorimeter) and 
frequency (VT,) [12]. This representation shows the dynamic behaviour of 
different calorimeter groups around a certain half transfer function [ 121. 
Consequently, any result concerning a given calorimeter may be readily 
generalized to this average behaviour provided such a relative representation 
is adopted, and since its signal/noise ratio is known the kinetic limits of a 
given calorimeter may be calculated [ 121. 

In this work, we examine (taking for granted such a relative representa- 
tion) whether the quality of the resultant thermogenesis is modified by the 
standard smoothing techniques used in inverse filtration or Z-transforms. 
We also analyze the integration over T, (v, = l/T,, V, being the cutoff 
frequency in harmonic analysis) that partially suppresses the extra oscillation 
given by a finite inverse Fourier Transform. The different smoothing options 
are tabulated in a relative scale according to the signal/noise ratio of a given 
device. 

DECONVOLUTION BY HARMONIC ANALYSIS 

The thermogenesis can be obtained from 

e( t ) = T- 1 [TS/TF] 

where T- ’ is the inverse Fourier transformation, TS is the Fourier Trans- 
form of the thermogram, and TF is the transfer function of the device. These 
transforms are performed with the aid of the Fast Fourier Transform 
algorithm (FFT). 

Generally, the experimental noise which affects both the thermogram and 
the transfer function considerably deforms the thermogenesis if the decon- 
volution includes frequencies higher than a certain frequency v,, which 
depends essentially on the signal/noise ratio. Therefore a cutoff frequency 
v,( V, 5 vn) must be introduced to suppress this part of the spectrum. 

However, such a frequential window brings about an extra oscillation 
superimposed on the thermogenesis which is in no way negligible. Such an 
oscillation asymptotically reduces to a sinusoidal wave with decreasing 
amplitude and period T, = l/vc [9]. A simple integration over T, has been 
introduced as an easy way to partially eliminate it [9,10] although in the 
literature more sophisticated methods exist (see, e.g., Lanczos convergence 
factors in ref. 13). 
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The integration over T, 

S(t) =+-/;+“‘s(t’) dt’ 
c I T,.2 

is equivalent to applying an extra filter on s(t) whose frequential representa- 
tion is (see Appendix) 

] eP7;./2 _ e-PC/z 

s(P)=_T S(P) 
c P 

Consequently, integrating the resultant thermogenesis gives rise to a 
modification in the dynamic gain of the system. This modification can be 
seen in Fig. 1 where the action of the filter is represented together with the 
transfer function of the JLM-El calorimeter. In fact, relative frequency 
representation clearly shows that the frequency range attainable by any 
conduction calorimeter is not actually much larger than that of the JLM-El 
calorimeter (see ref. lo), which is why the analysis has been focussed on the 
TF of this calorimeter corresponding to two different locations of the heat 
sources: on the axis of the calorimetric vessel (left) and near the detector 
system (right). T, is 8 s and 2 s, respectively (see ref. 9 for a full explanation 
of the choice of cutoff frequency and integration period). V, decreases with 
decreasing signal/noise ratios and, consequently, integration periods rise. 
An adequate choice of T, leads to a reduction in the influence of noise but 

Fig. 1. Experimental transfer function (modulus in dB and phase in rad) of the JLM-El 
conduction calorimeter (A and A’). B and B’ are the analytic approximations to the TF; C 
and C’ are the frequential representations of the integral smoothing over T,; D and D’ are the 
analytical models plus the corresponding filter. (Unprimed capital letters stand for dissipa- 
tions far from the detector system whereas primed ones correspond to dissipations near the 
detectors). Av = l/2048 Hz. 
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without loss of information. In other words, smoothing should only deform 
that part of the spectrum affected by noise and, in any case, this deformation 
should never exceed the uncertainty due to the noise itself. 

With regard to analytical approximations of the RF [2] that progressively 
diverge from the actual TF of the system (B and B’, Fig. l), a smoothing 
technique may be introduced to cancel the effect of the corrector from that 
frequency where the nodal and TF appreciably diverge. Now, such a 
smoothing technique would not affect the quality of the resultant thermo- 
genesis if the deformation which it introduces is of the same order of 
magnitude as the divergence between the model and the TF or, in other 
words, the smoothing should only deform that part of the spectrum that has 
no useful information. 

DECONVOLUTION BY MEANS OF Z-TRANSFORM 

The use of the pulsed transfer function requires the introduction of 
Truxal’s method of compensation. The compensating plant resides in ficti- 
tious zeros which make the system physically possible. These zeros are 
chosen in such a way that they also smooth the experimental noise without 
affecting the quality of the thermogenesis obtained. On the other hand, the 
TF of the calorimeter may be obtained from its pulsed response and the 
FFT. This TF serves as a test for the model introduced to perform the 
Z-transform and to evaluate the influence of the added zeros. 

Figure 2 shows both the experimental TF and the corresponding model 
(three poles); it is also seen that the three extra zeros (1.02 s, see ref. 5) 
added to the model only modify the actual TF of the system for frequencies 
beyond v,,, Consequently, the quality of the resultant thermogenesis remains 
unaffected. The reasoning behind the choice of these zeros is just the same as 
the choice of T, which was explained in the previous section. 

If the signal/noise ratio decreases, the value of the zeros r* increases and, 
consequently, counteracts the effect of those poles r, s r*. This means that 
with increasing noise amplitude, the deconvolutive possibilities decrease. The 
TF of the calorimeter used to test experimentally the efficiency of the 
method lies inside the fluctuation interval of TF (see Fig. 3), so the results 
obtained may be immediately translated to a general case. 

REDUCED REPRESENTATION 

Reduced scales ( t’ = t/71 and v’ = vr,) have been proposed to systematize 
the behaviour of different calorimeters. Figure 3 shows an average represen- 
tation of the TF, ]TF( o)], together with the fluctuation range. Let us consider 
how the values of the compensating zeros of the pulsed transfer function and 
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Fig. 2. Modulus (A) in dB and phase (B) in rad of: (a) experimental TF of STQ.ADA 
calorimeter; (b) model (T, = 378.0 s, T* = 17.0 s, TV = 0.4 s); (c) compensating plant (three 
poles T* = 1.02); (d) model plus compensating plant. 

also the values of T, used to smooth the thermogenesis given by harmonic 
analysis may be calculated from the signal/noise ratio on this scale. 

The zeros should, at most, add to the TF the same uncertainty as the 
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Fig. 3. The effect of the smoothing techniques discussed in the text. A is related to the 
Z-transform and B is related to harmonic analysis (both are presented in reduced units). 
(- - -) are two different locations of the sources in the JLM-El calorimeter. They show 
the widest range of variation on this scale. (- ) is the experimental transfer function of 
the STQ-ADA calorimeter [5]. (.--.-.) is the analytical approximation to the experimental 
TF. (- -) represents the smoothing filters in reduced units proposed in the text, either the 
compensating plant (A) or the integration over T, (B). (. .-. e -) is the analytical model plus 
the corresponding filter (A or B). 
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TABLE 1 

Selected values of the parameters defining both filters presented in the text in reduced units 
and for different signal/noise ratios N,mi” and NcmaX represent the lower and upper limits 
depending on the cell constants and the location of the sources in the case of harmonic 
analysis. 

S/N (dB) iy 7*/r, f vcr1 % Nmin 
0 Nma” 0 

40 5 0.013 2 14 94 
60 13 0.005 2.3 36 243 229 257 
80 24 0.0027 2.4 66 449 411 513 

100 45 0.0015 2.2 123 842 684 1025 

noise. As a reference, this uncertainty is taken as 2 dB (see the Appendix). 
We then calculate the values of the zeros belonging to the compensating 
plant in reduced units and corresponding to various signal/noise ratios, and 
their range of fluctuation depending on the cell contents or the location of 
the heat sources [lo]. 

The elimination of the extra oscillation caused by the cutoff frequency in 
harmonic analysis gives rise to a criterion very similar to the previous one. 
Now we look for a frequency, say vZdB, where the noise superimposed on the 
TF exceeds 2 dB. We than make the filter introduce, at most, the same 
deformation at the same frequency. This condition allows us to calculate the 
period T, of the filter and consequently the cutoff frequency which is to be 
used in the calculus: v, P 2.74 v2 dB (see the Appendix and Table 1). In this 
way the deformation introduced by the filter never exceeds the uncertainty 
brought about by noise. However, due to the fact that the FFT handles a set 
of N points where N = 2M (M is an integer), the choice of vC is not arbitrary 
(see Table 1 in ref. 10). Table 1 shows the values of vC in terms of the 
equivalent frequency intervals NJ v, = (NC - 1) Av]. It should also be remem- 
bered that the standard sampling period is At = 7,/300 since this period 
allows an adequate representation of the system’s dynamic response up to 
signal/noise ratios = lo5 (100 dB). 

CONCLUSIONS 

When the deconvolution is performed by means of Z-transforms a certain 
number of extra zeros must be added to the model for the TF so that the 
number of poles is the same as the number of zeros. The values of the extra 
zeros, in reduced units, should be 7*/r, = O.O65/(v,r). v,, is the frequency 
where the experimental noise on the TF amounts to 2 dB. If the deconvolu- 
tion were performed through harmonic analysis, the cutoff frequency would 
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be given by 

(~~7,) = 2.74( ~,,r,) 

Due to the average characteristics of calorimetric devices the previous 
criteria can be modified according to different amounts of noise. In fact, 
considering divergences ranging between 2 and 10 dB does not appreciably 
change the final result, neither the compensating zeros nor T,. For instance, 
if V, corresponds to noise oscillations ranging around 10 dB then, similar 
calculations yield 

7*/7, = 0.17/( V”T,) 

and correspondingly 

( v=T,) = 1.36( ~,,rr) 

Harmonic analysis deals with a discrete frequency spectrum. If an easy 
suppression of the ripple is intended then N, = N/( n + 1) where n is an 
integer, N = 2 M is the number of points handled by the routine, and 
vc = (N, - 1)Av. Now if one finds a 2 dB (10 dB) fluctuation at N,,, N, 
should be the nearest integer to 2.74 N,, (1.36 N,). 

REMARK 

We have only been dealing with noise affecting the TF of the system. 
Consequently, integration and frequential limits given throughout the paper 
correspond to the most favourable situation, i.e., the frequential limits given 
should be reduced if the signal/noise ratio of the thermogram is lower than 
that of the TF. 
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APPENDIX 

A. A Simple way to partially suppress the ripple on the thermogenesis caused by a finite 
inverse transform is 

T(t) = $ [‘_:“;:‘f( r’)dr’ 
‘ 

Taking the derivative of this expression 

@)=f[f(l+~/2)-f(r-T,_2)] 
c 

The Laplace Transform of ?‘(t) now yields 

S F(p)-?(O) = f [ /-f( .)e-P(“-~/2)dU - iccf( r)epP(r+%/2)dp.] 
c 0 

PC/~ _ e-Prc/‘]F(s) 

Taking j(O) = 0, then 

, e+~r./2 _e-~T,/2 

w=, F(P) 
c P 

Its phase is zero and its modulus is 

Let us now consider a divergence between l@(w)1 and IF(o)1 of 2 dB, then 

2 = 20 log 
sin( a2 &/2) 

2dB = 2Tv2,jB; v, = 2r/T,) 

Solving for vc: v, = 2.74 v2dt,. ( If the divergence 10 dB, then v, = 1.36 v,~ da.) 
B. Smoothing through a triple zero considers a compensating plant which reads 

G(s)= (l+~*s)~ 

whose modulus (dB) and phase (rad) are 

G(v) = 20 log( 1 +47r2v2r*2)3’2 

q(v) = 3 tan-‘(2wv7*) 

Considering again a divergence of 2 dB, we obtain 

2 = 30 log( 1 +4&;da?z) 

Finally 

r* = 0.065/v,,, 

Correspondingly 

r* = o.17/v,od, 


